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Abstract

Multilingual knowledge graphs (KGs), such as
YAGO and DBpedia, represent entities in dif-
ferent languages. The task of cross-lingual
entity alignment is to match entities in a
source language with their counterparts in tar-
get languages. In this work, we investigate
embedding-based approaches to encode enti-
ties from multilingual KGs into the same vec-
tor space, where equivalent entities are close to
each other. Specifically, we apply graph con-
volutional networks (GCNs) to combine multi-
aspect information of entities, including topo-
logical connections, relations, and attributes of
entities, to learn entity embeddings. To exploit
the literal descriptions of entities expressed in
different languages, we propose two uses of a
pretrained multilingual BERT model to bridge
cross-lingual gaps. We further propose two
strategies to integrate GCN-based and BERT-
based modules to boost performance. Exten-
sive experiments on two benchmark datasets
demonstrate that our method significantly out-
performs existing systems.

1 Introduction

A growing number of multilingual knowledge
graphs (KGs) have been built, such as DBpedia
(Bizer et al., 2009), YAGO (Suchanek et al., 2008;
Rebele et al., 2016), and BabelNet (Navigli and
Ponzetto, 2012), which typically represent real-
world knowledge as separately-structured mono-
lingual KGs. Such KGs are connected via inter-
lingual links (ILLs) that align entities with their
counterparts in different languages, exemplified
by Figure 1 (top). Highly-integrated multilingual
KGs contain useful knowledge that can benefit
many knowledge-driven cross-lingual NLP tasks,
such as machine translation (Moussallem et al.,
2018) and cross-lingual named entity recognition
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Figure 1: An example fragment of two KGs (in English
and Japanese) connected by an inter-lingual link (ILL).
In addition to the graph structures (top) consisting of
entity nodes and typed relation edges, KGs also provide
attributes and literal descriptions of entities (bottom).

(Darwish, 2013). However, the coverage of ILLs
among existing KGs is quite low (Chen et al.,
2018): for example, less than 20% of the enti-
ties in DBpedia are covered by ILLs. The goal of
cross-lingual entity alignment is to discover enti-
ties from different monolingual KGs that actually
refer to the same real-world entities, i.e., discover-
ing the missing ILLs.

Traditional methods for this task apply ma-
chine translation techniques to translate entity la-
bels (Spohr et al., 2011). The quality of align-
ments in the cross-lingual scenario heavily de-
pends on the quality of the adopted translation sys-
tems. In addition to entity labels, existing KGs
also provide multi-aspect information of entities,



including topological connections, relation types,
attributes, and literal descriptions expressed in dif-
ferent languages (Bizer et al., 2009; Xie et al.,
2016), as shown in Figure 1 (bottom). The key
challenge of addressing such a task thus is how to
better model and use provided multi-aspect infor-
mation of entities to bridge cross-lingual gaps and
find more equivalent entities (i.e., ILLs).

Recently, embedding-based solutions (Chen
et al., 2017b; Sun et al., 2017; Zhu et al., 2017;
Wang et al., 2018; Chen et al., 2018) have been
proposed to unify multilingual KGs into the same
low-dimensional vector space where equivalent
entities are close to each other. Such methods only
make use of one or two aspects of the aforemen-
tioned information. For example, Zhu et al. (2017)
relied only on topological features while Sun et al.
(2017) and Wang et al. (2018) exploited both topo-
logical and attribute features. Chen et al. (2018)
proposed a co-training algorithm to combine topo-
logical features and literal descriptions of entities.
However, combining these multi-aspect informa-
tion of entities (i.e., topological connections, rela-
tions and attributes, as well as literal descriptions)
remains under-explored.

In this work, we propose a novel approach to
learn cross-lingual entity embeddings by using all
aforementioned aspects of information in KGs.
To be specific, we propose two variants of GCN-
based models, namely MAN and HMAN, that in-
corporate multi-aspect features, including topo-
logical features, relation types, and attributes into
cross-lingual entity embeddings. To capture se-
mantic relatedness of literal descriptions, we fine-
tune the pretrained multilingual BERT model (De-
vlin et al., 2019) to bridge cross-lingual gaps.
We design two strategies to combine GCN-based
and BERT-based modules to make alignment de-
cisions. Experiments show that our method
achieves new state-of-the-art results on two bench-
mark datasets. Source code for our models is
publicly available at https://github.com/
h324yang/HMAN.

2 Problem Definition

In a multilingual knowledge graph G, we use L
to denote the set of languages that G contains
and Gi = {Ei, Ri, Ai, Vi, Di} to represent the
language-specific knowledge graph in language
Li ∈ L. Ei, Ri, Ai, Vi and Di are sets of entities,
relations, attributes, values of attributes, and literal

descriptions, each of which portrays one aspect of
an entity. The graph Gi consists of relation triples
〈hi, ri, ti〉 and attribute triples 〈hi, ai, vi〉 such that
hi, ti ∈ Ei, ri ∈ Ri, ai ∈ Ai and vi ∈ Vi. Each
entity is accompanied by a literal description con-
sisting of a sequence of words in language Li, e.g.,
〈hi, dh,i〉 and 〈ti, dt,i〉, dh,i, dt,i ∈ Di.

Given two knowledge graphs G1 and G2 ex-
pressed in source language L1 and target language
L2, respectively, there exists a set of pre-aligned
ILLs I (G1,G2) = {(e, u) |e ∈ E1, u ∈ E2}
which can be considered training data. The task
of cross-lingual entity alignment is to align enti-
ties in G1 with their cross-lingual counterparts in
G2, i.e., discover missing ILLs.

3 Proposed Approach

In this section, we first introduce two GCN-based
models, namely MAN and HMAN, that learn en-
tity embeddings from the graph structures. Sec-
ond, we discuss two uses of a multilingual pre-
trained BERT model to learn cross-lingual em-
beddings of entity descriptions: POINTWISEBERT

and PAIRWISEBERT. Finally, we investigate two
strategies to integrate the GCN-based and the
BERT-based modules.

3.1 Cross-Lingual Graph Embeddings

Graph convolutional networks (GCNs) (Kipf and
Welling, 2017) are variants of convolutional net-
works that have proven effective in capturing in-
formation from graph structures, such as depen-
dency graphs (Guo et al., 2019b), abstract mean-
ing representation graphs (Guo et al., 2019a), and
knowledge graphs (Wang et al., 2018). In practice,
multi-layer GCNs are stacked to collect evidence
from multi-hop neighbors. Formally, the l-th GCN
layer takes as input feature representations H(l−1)

and outputs H(l):

H(l) = φ
(
D̃−

1
2 ÃD̃−

1
2H(l−1)W (l)

)
(1)

where Ã = A + I is the adjacency matrix, I is
the identity matrix, D̃ is the diagonal node degree
matrix of Ã, φ(·) is ReLU function, and W (l) rep-
resents learnable parameters in the l-th layer. H(0)

is the initial input.
GCNs can iteratively update the representation

of each entity node via a propagation mechanism
through the graph. Inspired by previous studies
(Zhang et al., 2018; Wang et al., 2018), we also
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adopt GCNs in this work to collect evidence from
multilingual KG structures and to learn cross-
lingual embeddings of entities. The primary as-
sumptions are: (1) equivalent entities tend to be
neighbored by equivalent entities via the same
types of relations; (2) equivalent entities tend to
share similar or even the same attributes.

Multi-Aspect Entity Features. Existing KGs
(Bizer et al., 2009; Suchanek et al., 2008; Rebele
et al., 2016) provide multi-aspect information of
entities. In this section, we mainly focus on the
following three aspects: topological connections,
relations, and attributes. The key challenge is how
to utilize the provided features to learn better em-
beddings of entities. We discuss how we construct
raw features for the three aspects, which are then
fed as inputs to our model. We use Xt, Xr and Xa

to denote the topological connection, relation, and
attribute features, individually.

The topological features contain rich neighbor-
hood proximity information of entities, which can
be captured by multi-layer GCNs. As in Wang
et al. (2018), we set the initial topological features
to Xt = I , i.e., an identity matrix serving as index
vectors (also known as the featureless setting), so
that the GCN can learn the representations of cor-
responding entities.

In addition, we also consider the relation and
attribute features. As shown in Figure 1, the
connected relations and attributes of two equiv-
alent entities, e.g., “University of Toronto” (En-
glish) and “トロント大学” (Japanese), have a
lot of overlap, which can benefit cross-lingual en-
tity alignment. Specifically, they share the same
relation types, e.g., “country” and “almaMater”,
and some attributes, e.g., “foundDate” and “創立
年”. To capture relation information, Schlichtkrull
et al. (2018) proposed RGCN with relation-wise
parameters. However, with respect to this task, ex-
isting KGs typically contain thousands of relation
types but few pre-aligned ILLs. Directly adopt-
ing RGCN may introduce too many parameters for
the limited training data and thus cause overfitting.
Wang et al. (2018) instead simply used the unla-
beled GCNs (Kipf and Welling, 2017) with two
proposed measures (i.e., functionality and inverse
functionality) to encode the information of rela-
tions into the adjacency matrix. They also con-
sidered attributes as input features in their archi-
tecture. However, this approach may lose infor-
mation about relation types. Therefore, we re-

gard relations and attributes of entities as bag-of-
words features to explicitly model these two as-
pects. Specifically, we construct count-based N-
hot vectors Xr and Xa for these two aspects of
features, respectively, where the (i, j) entry is the
count of the j-th relation (attribute) for the cor-
responding entity ei. Note that we only consider
the top-F most frequent relations and attributes to
avoid data sparsity issues. Thus, for each entity,
both of its relation and attribute features are F -
dimensional vectors.
MAN. Inspired by Wang et al. (2018), we propose
the Multi-Aspect Alignment Network (MAN) to
capture the three aspects of entity features. Specif-
ically, three l-layer GCNs take as inputs the triple-
aspect features (i.e., Xt, Xr, and Xa) and produce
the representations H(l)

t , H(l)
r , and H

(l)
a accord-

ing to Equation 1, respectively. Finally, the multi-
aspect entity embedding is:

Hm = [H
(l)
t ⊕H(l)

a ⊕H(l)
r ] (2)

where ⊕ denotes vector concatenation. Hm can
then feed into alignment decisions.

Such fusion through concatenation is also
known as Scoring Level Fusion, which has been
proven simple but effective for capturing multi-
modal semantics (Bruni et al., 2014; Kiela and
Bottou, 2014; Collell et al., 2017). It is worth not-
ing that the main differences between MAN and
the work of Wang et al. (2018) are two fold: First,
we use the same approach as in Kipf and Welling
(2017) to construct the adjacency matrix, while
Wang et al. (2018) designed a new connectivity
matrix as the adjacency matrix for the GCNs. Sec-
ond, MAN explicitly regards the relation type fea-
tures as model input, while Wang et al. (2018) in-
corporated such relation information into the con-
nectivity matrix.
HMAN. Note that MAN propagates relation and
attribute information through the graph structure.
However, for aligning a pair of entities, we ob-
serve that considering the relations and attributes
of neighboring entities, besides their own ones,
may introduce noise. Merely focusing on relation
and attribute features of the current entity could
be a better choice. Thus, we propose the Hybrid
Multi-Aspect Alignment Network (HMAN) to bet-
ter model such diverse features, shown in Figure 2.
Similar to MAN, we still leverage the l-th layer
of a GCN to obtain topological embeddings H(l)

t ,
but exploit feedforward neural networks to obtain
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Figure 2: Architecture of HMAN.

the embeddings with respect to relations and at-
tributes. The feedforward neural networks consist
of one fully-connected (FC) layer and a highway
network layer (Srivastava et al., 2015). The rea-
son we use highway networks is consistent with
the conclusions of Mudgal et al. (2018), who con-
ducted a design space exploration of neural mod-
els for entity matching and found that highway
networks are generally better than FC layers in
convergence speed and effectiveness.

Formally, these feedforward neural networks
are defined as:

Sf = φ(W
(1)
f Xf + b

(1)
f )

Tf = σ(W t
fSf + btf ) (3)

Gf = φ(W
(2)
f Sf + b

(2)
f ) · Tf + Sf · (1− Tf )

where f ∈ {r, a} and Xf refer to one specific
aspect (i.e., relation or attribute) and the corre-
sponding raw features, respectively, W (1,2,t)

f and

b
(1,2,t)
f are model parameters, φ(·) is ReLU func-

tion, and σ(·) is sigmoid function. Accordingly,
we obtain the hybrid multi-aspect entity embed-
ding Hy = [H

(l)
t ⊕Gr⊕Ga], to which `2 normal-

ization is further applied.

Model Objective. Given two knowledge graphs,
G1 and G2, and a set of pre-aligned entity pairs
I (G1,G2) as training data, our model is trained in
a supervised fashion. During the training phase,
the goal is to embed cross-lingual entities into the
same low-dimensional vector space where equiv-

alent entities are close to each other. Following
Wang et al. (2018), our margin-based ranking loss
function is defined as:

J =
∑

(e1,e2)∈I

∑
(e
′
1,e
′
2)∈I

′

[ρ(he1 , he2) + β

− ρ(h
e
′
1
, h

e
′
2
)]+ (4)

where [x]+ = max{0, x}, I ′ denotes the set of
negative entity alignment pairs constructed by cor-
rupting the gold pair (e1, e2) ∈ I . Specifically, we
replace e1 or e2 with a randomly-chosen entity in
E1 or E2. ρ(x, y) is the `1 distance function, and
β > 0 is the margin hyperparameter separating
positive and negative pairs.

3.2 Cross-Lingual Textual Embeddings

Existing multilingual KGs (Bizer et al., 2009;
Navigli and Ponzetto, 2012; Rebele et al., 2016)
also provide literal descriptions of entities ex-
pressed in different languages and contain detailed
semantic information about the entities. The key
observation is that literal descriptions of equiva-
lent entities are semantically close to each other.
However, it is non-trivial to directly measure the
semantic relatedness of two entities’ descriptions,
since they are expressed in different languages.

Recently, Bidirectional Encoder Representa-
tions from Transformer (BERT) (Devlin et al.,
2019) has advanced the state-of-the-art in vari-
ous NLP tasks by heavily exploiting pretraining
based on language modeling. Of special inter-
est is the multilingual variant, which was trained
with Wikipedia dumps of 104 languages. The
spirit of BERT in the multilingual scenario is
to project words or sentences from different lan-
guages into the same semantic space. This aligns
well with our objective—bridging gaps between
descriptions written in different languages. There-
fore, we propose two methods for applying multi-
lingual BERT, POINTWISEBERT and PAIRWISE-
BERT, to help make alignment decisions.

POINTWISEBERT. A simple choice is to follow
the basic design of BERT and formulate the entity
alignment task as a text matching task. For two en-
tities e1 and e2 from two KGs in L1 and L2, denot-
ing source language and target language, respec-
tively, their textual descriptions are d1 and d2, con-
sisting of word sequences in two languages. The
model takes as inputs [CLS] d1 [SEP] d2 [SEP],
where [CLS] is the special classification token,
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Figure 3: Architecture overview of POINTWISEBERT (left) and PAIRWISEBERT (right).

from which the final hidden state is used as the se-
quence representation, and [SEP] is the special to-
ken for separating token sequences, and produces
the probability of classifying the pair as equiva-
lent entities. The probability is then used to rank
all candidate entity pairs, i.e., ranking score. We
denote this model as POINTWISEBERT, shown in
Figure 3 (left).

This approach is computationally expensive,
since for each entity we need to consider all can-
didate entities in the target language. One solu-
tion, inspired by the work of Shi et al. (2019), is
to reduce the search space for each entity with a
reranking strategy (see Section 3.3).

PAIRWISEBERT. Due to the heavy computational
cost of POINTWISEBERT, semantic matching be-
tween all entity pairs is very expensive. Instead
of producing ranking scores for description pairs,
we propose PAIRWISEBERT to encode the entity
literal descriptions as cross-lingual textual embed-
dings, where distances between entity pairs can be
directly measured using these embeddings.

The PAIRWISEBERT model consists of two
components, each of which takes as input the de-
scription of one entity (from the source or target
language), as depicted in Figure 3 (right). Specifi-
cally, the input is designed as [CLS] d1(d2) [SEP],
which is then fed into PAIRWISEBERT for contex-
tual encoding. We select the hidden state of [CLS]
as the textual embedding of the entity description
for training and inference. To bring the textual em-
beddings of cross-lingual entity descriptions into
the same vector space, a similar ranking loss func-
tion as in Equation 4 is used.

3.3 Integration Strategy
Sections 3.1 and 3.2 introduce two modules that
separately collect evidence from knowledge graph

structures and the literal descriptions of entities,
namely graph and textual embeddings. In this
section, we investigate two strategies to integrate
these two modules to further boost performance.
Reranking. As mentioned in Section 3.2, the
POINTWISEBERT model takes as input the con-
catenation of two descriptions for each candidate–
entity pair, where conceptually we must process
every possible pair in the training set. Such a set-
ting would be cost prohibitive computationally.

One way to reduce the cost of POINTWISEBERT

would be to ignore candidate pairs that are un-
likely to be aligned. Rao et al. (2016) showed
that uncertainty-based sampling can provide ex-
tra improvements in ranking. Following this idea,
the GCN-based models (i.e., MAN and HMAN)
are used to generate a candidate pool whose size
is much smaller than the entire universe of en-
tities. Specifically, GCN-based models provide
top-q candidates of target entities for each source
entity (where q is a hyperparameter). Then, the
POINTWISEBERT model produces a ranking score
for each candidate–entity pair in the pool to fur-
ther rerank the candidates. However, the weakness
of such a reranking strategy is that performance
is bounded by the quality of (potentially limited)
candidates produced by MAN or HMAN.
Weighted Concatenation. With the textual em-
beddings learned by PAIRWISEBERT denoted as
HB and graph embeddings denoted as HG, a
simple way to combine the two modules is by
weighted concatenation:

HC = τ ·HG ⊕ (1− τ) ·HB (5)

where HG is the graph embeddings learned by ei-
ther MAN or HMAN, and τ is a factor to balance
the contribution of each source (where τ is a hy-
perparameter).



3.4 Entity Alignment
After we obtain the embeddings of entities, we
leverage `1 distance to measure the distance be-
tween candidate–entity pairs. A small distance re-
flects a high probability for an entity pair to be
aligned as equivalent entities. To be specific, with
respect to the reranking strategy, we select the tar-
get entities that have the smallest distances to a
source entity in the vector space learned by MAN

or HMAN as its candidates. For weighted concate-
nation, we employ the `1 distance of the represen-
tations of a pair derived from the concatenated em-
bedding, i.e., HC , as the ranking score.

4 Experiments

4.1 Datasets and Settings
We evaluate our methods over two benchmark
datasets: DBP15K and DBP100K (Sun et al.,
2017). Table 1 outlines the statistics of both
datasets, which contain 15,000 and 100,000 ILLs,
respectively. Both are divided into three subsets:
Chinese-English (ZH-EN), Japanese-English (JA-
EN), and French-English (FR-EN).

Following previous work (Sun et al., 2017;
Wang et al., 2018), we adopt the same split settings
in our experiments, where 30% of the ILLs are
used as training and the remaining 70% for eval-
uation. Hits@k is used as the evaluation metric
(Bordes et al., 2013; Sun et al., 2017; Wang et al.,
2018), which measures the proportion of correctly
aligned entities ranked in the top-k candidates, and
results in both directions, e.g., ZH-EN and EN-
ZH, are reported.

In all our experiments, we employ two-layer
GCNs and the top 1000 (i.e., F=1000) most fre-
quent relation types and attributes are included to
build the N -hot feature vectors. For the MAN

model, we set the dimensionality of topological,
relation, and attribute embeddings to 200, 100, and
100, respectively. When training HMAN, the hy-
perparameters are dependent on the dataset sizes
due to GPU memory limitations. For DBP15K, we
set the dimensionality of topological embeddings,
relation embeddings, and attribute embeddings to
200, 100, and 100, respectively. For DBP100K,
the dimensionalities are set to 100, 50, and 50, re-
spectively. We adopt SGD to update parameters
and the numbers of epochs are set to 2,000 and
50,000 for MAN and HMAN, respectively. The
margin β in the loss function is set to 3. The bal-
ance factor τ is determined by grid search, which

Datasets
DBP15K

Entities Rel. Attr. Rel.triples Attr.triples

ZH-EN
Chinese 66,469 2,830 8,113 153,929 379,684
English 98,125 2,317 7,173 237,674 567,755

JA-EN
Japanese 65,744 2,043 5,882 164,373 354,619
English 95,680 2,096 6,066 233,319 497,230

FR-EN
French 66,858 1,379 4,547 192,191 528,665
English 105,889 2,209 6,422 278,590 576,543

Datasets
DBP100K

Entities Rel. Attr. Rel.triples Attr.triples

ZH-EN
Chinese 106,517 4,431 16,152 329,890 1,404,615
English 185,022 3,519 14,459 453,248 1,902,725

JA-EN
Japanese 117,836 2,888 12,305 413,558 1,474,721
English 118,570 2,631 13,238 494,087 1,738,803

FR-EN
French 105,724 1,775 8,029 409,399 1,361,509
English 107,231 2,504 13,170 513,382 1,957,813

Table 1: Statistics of DBP15K and DBP100K. Rel. and
Attr. stand for relations and attributes, respectively.

shows that the best performance lies in the range
from 0.8 to 0.7. For simplicity, τ is set to 0.8 in
all associated experiments. Multilingual BERT-
base models with 768 hidden units are used in
POINTWISEBERT and PAIRWISEBERT. We addi-
tionally append one more FC layer to the repre-
sentation of [CLS] and reduce the dimensionality
to 300. Both BERT models are fine-tuned using
the Adam optimizer.

4.2 Results on Graph Embeddings

We first compare MAN and HMAN against previ-
ous systems (Hao et al., 2016; Chen et al., 2017a;
Sun et al., 2017; Wang et al., 2018). As shown in
Table 2, MAN and HMAN consistently outperform
all baselines in all scenarios, especially HMAN. It
is worth noting that, in this case, MAN and HMAN

use as much information as Wang et al. (2018),
while Sun et al. (2017) require extra supervised
information (relations and attributes of two KGs
need to be aligned in advance). The performance
improvements confirm that our model can better
utilize topological, relational, and attribute infor-
mation of entities provided by KGs.

To explain why HMAN achieves better results
than MAN, recall that MAN collects relation and
attribute information by the propagation mech-
anism in GCNs where such knowledge is ex-
changed through neighbors, while HMAN uses
feedforward networks to capture expressive fea-
tures directly from the input feature vectors with-
out propagation. As we discussed before, it is not
always the case that neighbors of equivalent enti-
ties share similar relations or attributes. Propagat-
ing such features through linked entities in GCNs
may introduce noise and thus harm performance.



Model
ZH→ EN EN→ ZH JA→ EN EN→ JA FR→ EN EN→ FR

@1 .@10 @50 @1 .@10 @50 @1 .@10 @50 @1 .@10 @50 @1 .@10 @50 @1 .@10 @50

DBP15K

Hao et al. (2016) 21.2 42.7 56.7 19.5 39.3 53.2 18.9 39.9 54.2 17.8 38.4 52.4 15.3 38.8 56.5 14.6 37.2 54.0
Chen et al. (2017a) 30.8 61.4 79.1 24.7 52.4 70.4 27.8 57.4 75.9 23.7 49.9 67.9 24.4 55.5 74.4 21.2 50.6 69.9
Sun et al. (2017) 41.1 74.4 88.9 40.1 71.0 86.1 36.2 68.5 85.3 38.3 67.2 82.6 32.3 66.6 83.1 32.9 65.9 82.3
Wang et al. (2018) 41.2 74.3 86.2 36.4 69.9 82.4 39.9 74.4 86.1 38.4 71.8 83.7 37.2 74.4 86.7 36.7 73.0 86.3
MAN 46.0 79.4 90.0 41.5 75.6 88.3 44.6 78.8 90.0 43.0 77.1 88.7 43.1 79.7 91.7 42.1 79.1 90.9
MAN w/o TE 21.5 55.0 79.4 20.2 53.6 78.8 15.0 44.0 69.9 14.3 44.0 70.6 10.2 34.5 59.5 10.8 35.2 60.3
MAN w/o RE 45.6 79.1 89.5 41.1 75.0 87.3 44.2 78.7 89.8 43.0 76.9 88.1 42.8 79.7 91.4 42.1 78.9 90.6
MAN w/o AE 43.7 77.1 87.8 39.2 72.9 85.5 43.2 77.6 88.4 41.2 74.9 86.6 42.9 79.6 91.0 41.5 78.9 90.5
HMAN 56.2 85.1 93.4 53.7 83.4 92.5 56.7 86.9 94.5 56.5 86.6 94.6 54.0 87.1 95.0 54.3 86.7 95.1
HMAN w/o TE 13.2 16.7 38.3 13.5 17.2 38.5 15.4 22.3 45.5 15.2 22.0 45.5 12.4 13.9 35.3 12.2 13.7 35.3
HMAN w/o RE 50.2 78.4 86.5 49.3 78.6 87.0 52.6 81.6 89.1 52.4 81.1 89.8 52.7 84.2 91.4 52.0 83.9 91.1
HMAN w/o AE 49.2 81.0 89.8 48.8 80.9 90.0 52.2 83.3 91.6 51.5 83.1 91.6 52.3 85.6 93.7 52.3 85.1 93.2
HMAN w/o HW 46.8 76.1 84.1 46.0 76.2 84.6 50.5 79.5 87.5 49.9 79.1 87.5 51.9 82.7 90.9 51.6 82.5 90.6

DBP100K

Hao et al. (2016) 1-.1 16.9 1-.1 1-.1 16.6 1-.1 1-.1 21.1 1-.1 1-.1 20.9 1-.1 1-.1 22.9 1-.1 1-.1 22.6 1-.1
Chen et al. (2017a) 1-.1 34.3 1-.1 1-.1 29.1 1-.1 1-.1 33.9 1-.1 1-.1 27.2 1-.1 1-.1 44.8 1-.1 1-.1 39.1 1-.1
Sun et al. (2017) 20.2 41.2 58.3 19.6 39.4 56.0 19.4 42.1 60.5 19.1 39.4 55.9 26.2 54.6 70.5 25.9 51.3 66.9
Wang et al. (2018) 23.1 47.5 63.8 19.2 40.3 55.4 26.4 55.1 70.0 21.9 44.4 56.6 29.2 58.4 68.7 25.7 50.5 59.8
MAN 27.2 54.2 72.8 24.7 50.2 69.0 30.0 60.4 77.3 26.6 54.4 71.2 31.6 64.0 77.3 28.8 59.3 73.4
MAN w/o TE 11.8 28.6 47.7 11.2 28.3 47.9 17.4 21.7 39.4 17.2 21.6 39.8 15.4 19.4 38.2 15.1 18.8 37.1
MAN w/o RE 26.5 53.4 72.1 23.9 49.2 67.9 29.8 60.3 77.1 26.3 53.9 70.6 31.0 63.2 76.4 28.4 58.4 72.2
MAN w/o AE 25.5 51.7 70.4 22.8 47.6 66.3 29.4 59.4 76.1 25.9 52.9 69.7 30.8 62.7 75.8 28.1 57.8 71.5
HMAN 29.8 54.6 69.5 28.7 53.3 69.0 34.3 63.3 76.1 33.8 63.0 76.7 37.5 67.7 77.7 37.6 68.1 78.5
HMAN w/o TE 16.8 20.3 39.2 17.2 21.0 39.4 13.0 11.5 27.3 13.3 11.8 28.0 10.5 13.5 11.1 10.5 13.4 11.4
HMAN w/o RE 28.0 50.3 62.3 28.2 50.6 62.9 30.3 54.9 64.8 30.2 55.9 66.9 32.8 60.3 69.1 33.3 60.9 69.8
HMAN w/o AE 25.7 46.4 57.3 25.5 64.7 57.9 29.6 55.1 66.1 29.9 56.1 67.4 32.5 59.2 67.8 32.9 59.4 68.4
HMAN w/o HW 25.2 46.0 57.9 25.2 45.9 57.9 28.6 52.6 62.2 28.5 53.0 63.0 32.8 60.9 70.0 32.9 60.2 70.3

Table 2: Results of using graph information on DBP15K and DBP100K. @1, @10 and @50 refer to Hits@1,
Hits@10 and Hits@50, respectively.

Moreover, we perform ablation studies on the
two proposed models to investigate the effective-
ness of each component. We alternatively remove
each aspect of features (i.e., topological, relation,
and attribute features) and the highway layer in
HMAN, denoted as w/o TE (RE, AE, and HW). As
reported in Table 2, we observe that after removing
relation or attribute features, the performance of
HMAN and MAN drops across all datasets. These
figures prove that these two aspects of features
are useful in making alignment decisions. On
the other hand, compared to MAN, HMAN shows
more significant performance drops, which also
demonstrates that employing the feedforward net-
works can better categorize relation and attribute
features than GCNs in this scenario. Interest-
ingly, looking at the two variants MAN w/o TE and
HMAN w/o TE, we can see the former achieves
better results. Since MAN propagates relation and
attribute features via graph structures, it can still
implicitly capture topological knowledge of enti-
ties even after we remove the topological features.

However, HMAN loses such structure knowledge
when topological features are excluded, and thus
its results are worse. From these experiments, we
can conclude that the topological information is
playing an indispensable role in making alignment
decisions.

4.3 Results with Textual Embeddings

In this section, we discuss empirical results in-
volving the addition of entity descriptions, shown
in Table 3. Applying literal descriptions of en-
tities to conduct cross-lingual entity alignment is
relatively under-explored. The recent work of
Chen et al. (2018) used entity descriptions in their
model; however, we are unable to make compar-
isons with their work, as we do not have access
to their code and data. Since we employ BERT to
learn textual embeddings of descriptions, we con-
sider systems that also use external resources, like
Google Translate,1 as our baselines. We directly

1https://cloud.google.com/translate/

https://cloud.google.com/translate/


Model
ZH→ EN EN→ ZH JA→ EN EN→ JA FR→ EN EN→ FR

@1 .@10 @50 @1 .@10 @50 @1 .@10 @50 @1 .@10 @50 @1 .@10 @50 @1 .@10 @50

DBP15K

Translation∗ 55.7 67.6 74.3 40.3 54.2 62.2 74.6 84.5 89.1 61.9 72.0 77.2 1-.1 1-.1 1-.1 1-.1 1-.1 1-.1
JAPE + Translation∗ 73.0 90.4 96.6 62.7 85.2 94.2 82.8 94.6 98.3 75.9 90.7 96.0 1-.1 1-.1 1-.1 1-.1 1-.1 1-.1
PAIRWISEBERT 74.3 94.6 98.8 74.8 94.7 99.0 78.6 95.8 98.5 78.3 95.4 98.4 95.2 99.2 99.6 94.9 99.2 99.7
MAN (RERANK) 84.2 93.6 94.8 82.1 91.8 93.1 89.4 94.0 94.8 88.2 93.3 94.0 93.1 95.2 95.4 93.1 95.3 95.4
HMAN (RERANK) 86.5 95.9 96.9 85.8 94.1 95.3 89.0 96.0 97.3 89.0 96.0 97.5 95.3 97.7 97.8 95.2 97.9 98.1
MAN (WEIGHTED) 85.4 98.2 99.7 83.8 97.7 99.5 90.8 98.8 99.7 89.9 98.5 99.5 96.8 99.6 99.8 96.7 99.7 99.9
HMAN (WEIGHTED) 87.1 98.7 99.8 86.4 98.5 99.8 93.5 99.4 99.9 93.3 99.3 99.9 97.3 99.8 99.9 97.3 99.8 99.9

DBP100K

PAIRWISEBERT 65.1 85.1 92.6 66.2 85.8 92.9 67.7 86.5 93.1 67.9 86.4 93.2 93.2 97.9 98.9 93.4 98.0 98.9
MAN (RERANK) 59.5 62.1 62.2 55.9 58.2 58.2 65.5 68.2 68.4 59.9 62.1 62.3 69.7 70.4 70.5 65.5 66.2 66.2
HMAN (RERANK) 58.9 61.2 61.3 57.9 60.2 60.3 66.9 69.4 69.6 67.0 69.6 69.8 72.1 72.9 73.0 72.7 73.5 73.5
MAN (WEIGHTED) 81.4 94.9 98.2 80.5 94.1 97.7 84.3 95.4 98.3 81.5 94.2 97.6 96.2 99.3 99.7 95.7 99.1 99.6
HMAN (WEIGHTED) 81.1 94.3 97.8 80.3 94.5 97.9 85.2 96.1 98.4 84.6 96.1 98.5 96.5 99.4 99.7 96.5 99.5 99.8

Table 3: Results of using both graph and textual information on DBP15K and DBP100K. @1, @10, and @50 refer
to Hits@1, Hits@10, and Hits@50, respectively. ∗ indicates results are taken from (Sun et al., 2017).

take results reported by Sun et al. (2017), denoted
as “Translation” and “JAPE+Translation”.

The POINTWISEBERT model is used with
GCN-based models, which largely reduces the
search space, as indicated by MAN (RERANK) and
HMAN (RERANK), where the difference is that the
candidate pools are given by MAN and HMAN, re-
spectively. For DBP15K, we select top-200 can-
didate target entities as the candidate pool while
for DBP100K, top-20 candidates are selected due
to its larger size. The reranking method does lead
to performance gains across all datasets, where the
improvements are dependent on the quality of the
candidate pools. HMAN (RERANK) generally per-
forms better than MAN (RERANK) since HMAN

recommends more promising candidate pools.
The PAIRWISEBERT model learns the textual

embeddings that map cross-lingual descriptions
into the same space, which can be directly used
to align entities. The results are listed under
PAIRWISEBERT in Table 3. We can see that
it achieves good results on its own, which also
shows the efficacy of using multilingual descrip-
tions. Moreover, such textual embeddings can
be combined with graph embeddings (learned by
MAN or HMAN) by weighted concatenation, as
discussed in Section 3.3. The results are reported
as MAN (WEIGHTED) and HMAN (WEIGHTED),
respectively. As we can see, this simple operation
leads to significant improvements and gives excel-
lent results across all datasets. However, it is not
always the case that KGs provide descriptions for
every entity. For those entities whose descriptions

English Chinese

ILL pair Casino Royale (2006 film) (3) 007大戰皇家賭場 (3)
Features starring, starring, distributor starring, starring, language
Neighbors Daniel Craig (1), Eva Green (4),

Columbia Pictures (9)
丹尼爾·克雷格 (1), 伊娃·格
蓮 (4),英語 (832)

Table 4: Case study of the noise introduced by the prop-
agation mechanism.

are not available, the graph embeddings would be
the only source for making alignment decisions.

4.4 Case Study

In this section, we describe a case study to un-
derstand the performance gap between HMAN and
MAN. The example in Table 4 provides insights
potentially explaining this performance gap. We
argue that MAN introduces unexpected noise from
heterogeneous nodes during the GCN propagation
process. We use the number in parentheses (*) af-
ter entity names to denote the number of relation
features they have.

In this particular example, the two entities
“Casino Royale (2006 film)” in the source lan-
guage (English) and “007大戰皇家賭場” in the
target language (Chinese) both have three relation
features. We notice that the propagation mecha-
nism introduces some neighbors which are unable
to find cross-lingual counterparts from the other
end, marked in red. Considering the entity “英
語” (English), a neighbor of “007大戰皇家賭
場”, no counterparts can be found in the neigh-
bors of “Casino Royale (2006 film)”. We also ob-
serve that “英語” (English) is a pivot node in



the Chinese KG and has 832 relations, such as
“語言” (Language), “官方語言” (Official Lan-
guage), and “頻道語言” (Channel Language). In
this case, propagating features from neighbors can
harm performance. In fact, the feature sets of
the ILL pair already convey information that cap-
tures their similarity (e.g., the “starring” marked
in blue are shared twice). Therefore, by directly
using feedforward networks, HMAN is able to ef-
fectively capture such knowledge.

5 Related Work

KG Alignment. Research on KG alignment can
be categorized into two groups: monolingual and
multilingual entity alignment. As for monolingual
entity alignment, main approaches align two enti-
ties by computing string similarity of entity labels
(Scharffe et al., 2009; Volz et al., 2009; Ngomo
and Auer, 2011) or graph similarity (Raimond
et al., 2008; Pershina et al., 2015; Azmy et al.,
2019). Recently, Trsedya et al. (2019) proposed
an embedding-based model that incorporates at-
tribute values to learn the entity embeddings.

To match entities in different languages, Wang
et al. (2012) leveraged only language-independent
information to find possible links cross multi-
lingual Wiki knowledge graphs. Recent studies
learned cross-lingual embeddings of entities based
on TransE (Bordes et al., 2013), which are then
used to align entities across languages. Chen et al.
(2018) designed a co-training algorithm to alter-
nately learn multilingual entity and description
embeddings. Wang et al. (2018) applied GCNs
with the connectivity matrix defined on relations
to embed entities from multilingual KGs into a
unified low-dimensional space.

In this work, we also employ GCNs. However,
in contrast to Wang et al. (2018), we regard rela-
tion features as input to our models. In addition,
we investigate two different ways to capture rela-
tion and attribute features.

Multilingual Sentence Representations. An-
other line of research related to this work is
aligning sentences in multiple languages. Recent
works (Hermann and Blunsom, 2014; Conneau
et al., 2018; Eriguchi et al., 2018) studied cross-
lingual sentence classification via zero-shot learn-
ing. Johnson et al. (2017) proposed a sequence-
to-sequence multilingual machine translation sys-
tem where the encoder can be used to produce
cross-lingual sentence embeddings (Artetxe and

Schwenk, 2018). Recently, BERT (Devlin et al.,
2019) has advanced the state-of-the-art on multi-
ple natural language understanding tasks. Specif-
ically, multilingual BERT enables learning rep-
resentations of sentences under multilingual set-
tings. We adopt BERT to produce cross-lingual
representations of entity literal descriptions to cap-
ture their semantic relatedness, which benefits
cross-lingual entity alignment.

6 Conclusion and Future Work

In this work, we focus on the task of cross-lingual
entity alignment, which aims to discover map-
pings of equivalent entities in multilingual knowl-
edge graphs. We proposed two GCN-based mod-
els and two uses of multilingual BERT to investi-
gate how to better utilize multi-aspect information
of entities provided by KGs, including topological
connections, relations, attributes, and entity de-
scriptions. Empirical results demonstrate that our
best model consistently achieves state-of-the-art
performance across all datasets. In the future, we
would like to apply our methods to other multilin-
gual datasets such as YAGO and BabelNet. Also,
since literal descriptions of entities are not always
available, we will investigate alternative ways to
design graph-based models that can better capture
structured knowledge for this task.
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